1,473 research outputs found

    Logarithm laws for flows on homogeneous spaces

    Full text link
    We prove that almost all geodesics on a noncompact locally symmetric space of finite volume grow with a logarithmic speed -- the higher rank generalization of a theorem of D. Sullivan (1982). More generally, under certain conditions on a sequence of subsets AnA_n of a homogeneous space G/ΓG/\Gamma (GG a semisimple Lie group, Γ\Gamma a non-uniform lattice) and a sequence of elements fnf_n of GG we prove that for almost all points xx of the space, one has fnxAnf_n x\in A_n for infinitely many nn. The main tool is exponential decay of correlation coefficients of smooth functions on G/ΓG/\Gamma. Besides the aforementioned application to geodesic flows, as a corollary we obtain a new proof of the classical Khinchin-Groshev theorem in simultaneous Diophantine approximation, and settle a related conjecture recently made by M. Skriganov

    Magnetic moment of an electron gas on the surface of constant negative curvature

    Full text link
    The magnetic moment of an electron gas on the surface of constant negative curvature is investigated. It is shown that the surface curvature leads to the appearance of the region of the monotonic dependence M(B)M(B) at low magnetic fields. At high magnetic fields, the dependence of the magnetic moment on a magnetic field is the oscillating one. The effect of the surface curvature is to increase the region of the monotonic dependence of the magnetic moment and to break the periodicity of oscillations of the magnetic moment as a function of an inverse magnetic field.Comment: 4 pages, 1 figur

    Khintchine-type theorems on manifolds: the convergence case for standard and multiplicative versions

    Get PDF
    An analogue of the convergence part of the Khintchine-Groshev theorem, as well as its multiplicative version, is proved for nondegenerate smooth submanifolds in Rn\mathbb{R}^n. The proof combines methods from metric number theory with a new approach involving the geometry of lattices in Euclidean spaces.Comment: 27 page

    Property (T) and rigidity for actions on Banach spaces

    Full text link
    We study property (T) and the fixed point property for actions on LpL^p and other Banach spaces. We show that property (T) holds when L2L^2 is replaced by LpL^p (and even a subspace/quotient of LpL^p), and that in fact it is independent of 1p<1\leq p<\infty. We show that the fixed point property for LpL^p follows from property (T) when 1. For simple Lie groups and their lattices, we prove that the fixed point property for LpL^p holds for any 1<p<1< p<\infty if and only if the rank is at least two. Finally, we obtain a superrigidity result for actions of irreducible lattices in products of general groups on superreflexive Banach spaces.Comment: Many minor improvement

    Spin-orbit interaction and spin relaxation in a two-dimensional electron gas

    Full text link
    Using time-resolved Faraday rotation, the drift-induced spin-orbit Field of a two-dimensional electron gas in an InGaAs quantum well is measured. Including measurements of the electron mobility, the Dresselhaus and Rashba coefficients are determined as a function of temperature between 10 and 80 K. By comparing the relative size of these terms with a measured in-plane anisotropy of the spin dephasing rate, the D'yakonv-Perel' contribution to spin dephasing is estimated. The measured dephasing rate is significantly larger than this, which can only partially be explained by an inhomogeneous g-factor.Comment: 6 pages, 5 figure

    Fano resonances in a three-terminal nanodevice

    Full text link
    The electron transport through a quantum sphere with three one-dimensional wires attached to it is investigated. An explicit form for the transmission coefficient as a function of the electron energy is found from the first principles. The asymmetric Fano resonances are detected in transmission of the system. The collapse of the resonances is shown to appear under certain conditions. A two-terminal nanodevice with an additional gate lead is studied using the developed approach. Additional resonances and minima of transmission are indicated in the device.Comment: 11 pages, 5 figures, 2 equations are added, misprints in 5 equations are removed, published in Journal of Physics: Condensed Matte

    Semiclassical kinetic theory of electron spin relaxation in semiconductors

    Full text link
    We develop a semiclassical kinetic theory for electron spin relaxation in semiconductors. Our approach accounts for elastic as well as inelastic scattering and treats Elliott-Yafet and motional-narrowing processes, such as D'yakonov-Perel' and variable g-factor processes, on an equal footing. Focusing on small spin polarizations and small momentum transfer scattering, we derive, starting from the full quantum kinetic equations, a Fokker-Planck equation for the electron spin polarization. We then construct, using a rigorous multiple time scale approach, a Bloch equation for the macroscopic (k\vec{k}-averaged) spin polarization on the long time scale, where the spin polarization decays. Spin-conserving energy relaxation and diffusion, which occur on a fast time scale, after the initial spin polarization has been injected, are incorporated and shown to give rise to a weight function which defines the energy averages required for the calculation of the spin relaxation tensor in the Bloch equation. Our approach provides an intuitive way to conceptualize the dynamics of the spin polarization in terms of a ``test'' spin polarization which scatters off ``field'' particles (electrons, impurities, phonons). To illustrate our approach, we calculate for a quantum well the spin lifetime at temperatures and densities where electron-electron and electron-impurity scattering dominate. The spin lifetimes are non-monotonic functions of temperature and density. Our results show that at electron densities and temperatures, where the cross-over from the non-degenerate to the degenerate regime occurs, spin lifetimes are particularly long.Comment: 29 pages, 10 figures, final versio

    Dichlorido(4,7-diaza-1-azoniacyclo­nonane-κ2 N 4,N 7)palladium(II) p-toluene­sulfonate

    Get PDF
    The title compound, [PdCl2(C6H16N3)](C7H7SO3), consists of a PdII atom bonded to two N atoms of the 1,4,7-triaza­cyclo­nonane (TACN) ligand and two chloride ions, which define a distorted square-planar geometry. The third N atom of the TACN ligand is protonated and hydrogen bonds to the p-toluene­sulfonate anion. The Cl—Pd—Cl angle is larger than the N—Pd—N angle. The packing is dominated by layers, which are formed by the criss-crossing of two different hydrogen-bonded chains. One chain is composed of hydrogen-bonded Pd(TACNH)Cl2 + cations, while the second is formed through hydrogen bonding between the p-toluene­sulfonate anion and the Pd(TACNH)Cl2 + cation
    corecore